Visualization of the Kinetic Gas Theory Concept through the Air Expansion Experiment in Balloons as a Simple Practical Media

Authors

  • Lia Rosa Sihombing Universitas Jambi Author
  • Nabil Ma’ruf Universitas Jambi Author
  • Jeliana Veronika Sirait Universitas Jambi Author

Keywords:

Balloon volume, gas expansion, kinetic energy, temperature change, water temperature

Abstract

This study was conducted to understand how temperature variations affect the change in air volume within a balloon, referencing the key concepts in the Kinetic Gas Theory. In the experimental procedure, a balloon with an initial diameter of 20 cm was immersed in water at temperatures of 30°C, 45°C, and 60°C, with three repetitions for each condition to ensure stable results. Observations showed that the diameter of the balloon increased as the water temperature was raised. This increase is related to the rise in the kinetic energy of the gas particles when heated, causing the pressure against the balloon's walls to increase, which results in a larger volume. These findings demonstrate a direct relationship between temperature and changes in gas volume within a closed space. This discovery explains that heating has a significant effect on the expansion of air inside the balloon and supports the fundamental principle of gas behavior in response to changes in thermal energy. Overall, the study emphasizes that temperature variation plays an important role in volume changes, and the results can serve as a foundation for teaching or research related to gas dynamics.

References

Clark, J., & Deleo, M. (2019). A Modern Approach To Kinetic Gas Theory For Undergraduate Laboratories. Physics Review Education, 12(2 ), 45–56.

Amelia, M. (2025). Experimental Analysis Of The Principle Of Equilibrium Of Rigid Objects Using The Beam-Pivot System As A Physics Learning Medium. Jurnal Pendidikan Dan Ilmu Fisika, 5(2), 320–331.

Febrianti, W. (2024). Islamic Journal Of Integrated Science Education (Ijise). 3(3), 147–157.

Fenny, M. R. (2018). Optimasi Alat Praktikum Termodinamika Hukum Charles Gay-Lussac Untuk Mahasiswa Rekayasa Politeknik Negeri Bandung. 237–245.

Fitriana, D. (2021). Hasil Belajar Keterampilan Proses Sains Siswa Berbasis. 10(1), 1–12. Https://Doi.Org/10.20961/Inkuiri.V10i1.25238

Kua, M. Y. (2023). Tabung Suntik Untuk Hukum Boyle, Simulasi Pengukuran Udara Dengan Real World Problem Sebagai Alternatif Pemecahan Masalah. Ejurnal Imedtech, 4(2), 43–53.

Liu, X., Yu, Y., Hou, C., & Ding, J. (2024). Effects Of The Wall Temperature On The Boiling Process And The Molecular Dynamics Behavior Of The Liquid Hydrogen On A Flat Aluminum Wall. International Journal Of Hydrogen Energy, 51, 1130–1141.

Nasution, A. O., Batubara, S. B., Darkia, W., Balqis, S. T., Aprillia, J., & Adristi, T. S. (2025). Kajian Teoritis Termodinamika Pada Proses Ekspansi Gas Ideal Theoretical Study Of Thermodynamics On Ideal Gas Expansion Process Artikel Penelitian Article History : 8(2), 1189–1194. Https://Doi.Org/10.56338/Jks.V8i2.6838

Oss, S. (2025). Visualizing Thermal Equilibrium Through A Simple Kinetic Simulation. Physics Education, 61(1), 15022.

Ratu Fenny Muldiani, D. P. (2023). Analisis Model Persamaan Gas Nyata Pada Eksperimen Hukum Gay-Lussac Dan Boyle. 7, 1–7.

Runstedtler, A., & Duchesne, M. A. (2022). A Method To Predict Particle Collision Speeds In Fluidized Beds. Chemical Engineering Science, 264, 118157.

Sprittles, J. E. (2024). Gas Microfilms In Droplet Dynamics: When Do Drops Bounce? Annual Review Of Fluid Mechanics, 56(1), 91–118.

Yaumi, M. R., & Zulaikah, S. (2021). Analisis Penguasaan Konsep Dan Kesulitan Siswa Pada Materi Teori Kinetik Gas. 1333–1340.

Yu, X., Dong, H., Li, Y., Liu, C., Zhang, L., & Chen, Z. (2025). Microscopic Insights Into Co₂-Shale Oil Miscibility Via Interaction Energy Coupled With Pore Confinement: Implications For Co₂-Enhanced Oil Recovery. Advances In Geo-Energy Research, 17(2), 107–120.

Yusal, Y., Suhandi, A., Setiawan, W., & Kaniawati, I. (2021). Peningkatan Level Pemahaman Konsep Teori Kinetik Gas Mahasiswa Calon Guru Fisika Melalui Metode Demontrasi Interaktif Dengan Bantuan Ragam Media Visual. 5(1), 27–32.

Zhang, Y., & Hess, H. (2021). Chemically-Powered Swimming And Diffusion In The Microscopic World. Nature Reviews Chemistry, 5(7), 500–510.

Published

2026-01-01

Issue

Section

Articles